What produces hormones and is considered a neuroendocrine organ?

Hypothalamus as an endocrine organ

The endocrine hypothalamus constitutes those cells which project to the median eminence and secrete neurohormones into the hypophysial portal blood to act on cells of the anterior pituitary gland. The entire endocrine system is controlled by these peptides. In turn, the hypothalamic neuroendocrine cells are regulated by feedback signals from the endocrine glands and other circulating factors. The neuroendocrine cells are found in specific regions of the hypothalamus and are regulated by afferents from higher brain centers. Integrated function is clearly complex and the networks between and amongst the neuroendocrine cells allows fine control to achieve homeostasis. The entry of hormones and other factors into the brain, either via the cerebrospinal fluid or through fenestrated capillaries (in the basal hypothalamus) is important because it influences the extent to which feedback regulation may be imposed. Recent evidence of the passage of factors from the pars tuberalis and the median eminence casts a new layer in our understanding of neuroendocrine regulation. The function of neuroendocrine cells and the means by which pulsatile secretion is achieved is best understood for the close relationship between gonadotropin releasing hormone and luteinizing hormone, which is reviewed in detail. The secretion of other neurohormones is less rigid, so the relationship between hypothalamic secretion and the relevant pituitary hormones is more complex.

Similar articles

Rostène WH, Alexander MJ. Rostène WH, et al. Front Neuroendocrinol. 1997 Apr;18(2):115-73. doi: 10.1006/frne.1996.0146. Front Neuroendocrinol. 1997. PMID: 9101258 Review.

Ugriumov MV. Ugriumov MV. Ontogenez. 2009 Jan-Feb;40(1):19-29. Ontogenez. 2009. PMID: 19326840 Review. Russian.

Kalra SP, Crowley WR. Kalra SP, et al. Front Neuroendocrinol. 1992 Jan;13(1):1-46. Front Neuroendocrinol. 1992. PMID: 1361458 Review.

Gross DS, Baker BL. Gross DS, et al. Am J Anat. 1979 Jan;154(1):1-10. doi: 10.1002/aja.1001540102. Am J Anat. 1979. PMID: 367137

Gan EH, Quinton R. Gan EH, et al. Prog Brain Res. 2010;181:111-26. doi: 10.1016/S0079-6123(08)81007-2. Prog Brain Res. 2010. PMID: 20478435 Review.

Cited by

Matuszewska A, Kowalski K, Jawień P, Tomkalski T, Gaweł-Dąbrowska D, Merwid-Ląd A, Szeląg E, Błaszczak K, Wiatrak B, Danielewski M, Piasny J, Szeląg A. Matuszewska A, et al. Int J Mol Sci. 2023 Mar 30;24(7):6492. doi: 10.3390/ijms24076492. Int J Mol Sci. 2023. PMID: 37047464 Free PMC article. Review.

Huang J, Xu F, Yang L, Tuolihong L, Wang X, Du Z, Zhang Y, Yin X, Li Y, Lu K, Wang W. Huang J, et al. Front Mol Neurosci. 2023 Feb 1;16:1052288. doi: 10.3389/fnmol.2023.1052288. eCollection 2023. Front Mol Neurosci. 2023. PMID: 36818657 Free PMC article. Review.

Tajima Y, Ito K, Yuan Y, Frank MO, Saito Y, Darnell RB. Tajima Y, et al. Cell Rep. 2023 Jan 29;42(2):112050. doi: 10.1016/j.celrep.2023.112050. Online ahead of print. Cell Rep. 2023. PMID: 36716149

Romanò N, Lafont C, Campos P, Guillou A, Fiordelisio T, Hodson DJ, Mollard P, Schaeffer M. Romanò N, et al. JCI Insight. 2023 Feb 8;8(3):e165763. doi: 10.1172/jci.insight.165763. JCI Insight. 2023. PMID: 36574295 Free PMC article.

Huang S, Liu L, Tang X, Xie S, Li X, Kang X, Zhu S. Huang S, et al. Front Immunol. 2022 Dec 7;13:1062977. doi: 10.3389/fimmu.2022.1062977. eCollection 2022. Front Immunol. 2022. PMID: 36569944 Free PMC article. Review.