What are the types of hormones and their functions?

Hormones: Overview and Types

Hormones are messenger molecules that are synthesized in one part of the body and move through the bloodstream to exert specific regulatory effects on another part of the body. Hormones play critical roles in coordinating cellular activities throughout the body in response to the constant changes in both the internal and external environments. The work of hormones allows the body to maintain homeostasis Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Cell Injury and Death

and regulate growth and development. Hormones are typically either made from amino acids Acids Chemical compounds which yield hydrogen ions or protons when dissolved in water, whose hydrogen can be replaced by metals or basic radicals, or which react with bases to form salts and water (neutralization). An extension of the term includes substances dissolved in media other than water. Acid-Base Balance

or derived from cholesterol Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Cholesterol Metabolism

(the latter group being known as steroid hormones). Hormones exert their effects by binding to receptors Receptors Receptors are proteins located either on the surface of or within a cell that can bind to signaling molecules known as ligands (e.g., hormones) and cause some type of response within the cell. Receptors

either on the cell surface (most amino acid Amino acid Amino acids (AAs) are composed of a central carbon atom attached to a carboxyl group, an amino group, a hydrogen atom, and a side chain (R group). Basics of Amino Acids

–based hormones) or within the cytosol Cytosol A cell’s cytoskeleton is a network of intracellular protein fibers that provides structural support, anchors organelles, and aids intra- and extracellular movement. The Cell: Cytosol and Cytoskeleton

(steroid hormones). Ultimately, binding to receptors Receptors Receptors are proteins located either on the surface of or within a cell that can bind to signaling molecules known as ligands (e.g., hormones) and cause some type of response within the cell. Receptors

triggers changes in gene Gene A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Basic Terms of Genetics

expression or enzymatic activity within the cell.

Hormones and Endocrine Glands

Definition

Hormones are messenger molecules that are synthesized in one part of the body and move through the bloodstream to exert specific regulatory effects on another part of the body.

General functions of hormones

  • Responding to the internal and external environments:
    • Physical stress (e.g., injury, exercise)
    • Biochemical stress (e.g., ↓ blood sugar, hyperkalemia Hyperkalemia Hyperkalemia is defined as a serum potassium (K+) concentration >5.2 mEq/L. Homeostatic mechanisms maintain the serum K+ concentration between 3.5 and 5.2 mEq/L, despite marked variation in dietary intake. Hyperkalemia can be due to a variety of causes, which include transcellular shifts, tissue breakdown, inadequate renal excretion, and drugs. Hyperkalemia , hypercalcemia Hypercalcemia Hypercalcemia (serum calcium > 10.5 mg/dL) can result from various conditions, the majority of which are due to hyperparathyroidism and malignancy. Other causes include disorders leading to vitamin D elevation, granulomatous diseases, and the use of certain pharmacological agents. Symptoms vary depending on calcium levels and the onset of hypercalcemia. Hypercalcemia )
    • Mental stress (e.g., fear/danger)
    • Growth and development
    • Biologic rhythms (e.g., circadian sleep Sleep A readily reversible suspension of sensorimotor interaction with the environment, usually associated with recumbency and immobility. Physiology of Sleep cycles, menstrual cycle Menstrual cycle The menstrual cycle is the cyclic pattern of hormonal and tissular activity that prepares a suitable uterine environment for the fertilization and implantation of an ovum. The menstrual cycle involves both an endometrial and ovarian cycle that are dependent on one another for proper functioning. There are 2 phases of the ovarian cycle and 3 phases of the endometrial cycle. Menstrual Cycle )
    • Digestion Digestion Digestion refers to the process of the mechanical and chemical breakdown of food into smaller particles, which can then be absorbed and utilized by the body. Digestion and Absorption

    Endocrine glands Endocrine glands Ductless glands that secrete hormones directly into the blood circulation. These hormones influence the metabolism and other functions of cells in the body. Glandular Epithelium: Histology

    The major endocrine glands Endocrine glands Ductless glands that secrete hormones directly into the blood circulation. These hormones influence the metabolism and other functions of cells in the body. Glandular Epithelium: Histology

    Major organs of the endocrine system

    • Hypothalamus Hypothalamus The hypothalamus is a collection of various nuclei within the diencephalon in the center of the brain. The hypothalamus plays a vital role in endocrine regulation as the primary regulator of the pituitary gland, and it is the major point of integration between the central nervous and endocrine systems. Hypothalamus
    • Pituitary:
      • Anterior
      • Posterior
    • Pineal gland
    • Thyroid Thyroid The thyroid gland is one of the largest endocrine glands in the human body. The thyroid gland is a highly vascular, brownish-red gland located in the visceral compartment of the anterior region of the neck. Thyroid Gland: Anatomy gland
    • Parathyroid Parathyroid The parathyroid glands are 2 pairs of small endocrine glands found in close proximity to the thyroid gland. The superior parathyroid glands are lodged within the parenchyma of the upper poles of the right and left thyroid lobes; the inferior parathyroid glands are close to the inferior tips or poles of the lobes. Parathyroid Glands: Anatomy gland
    • GI system:
      • Pancreas Pancreas The pancreas lies mostly posterior to the stomach and extends across the posterior abdominal wall from the duodenum on the right to the spleen on the left. This organ has both exocrine and endocrine tissue. Pancreas: Anatomy
      • Stomach Stomach The stomach is a muscular sac in the upper left portion of the abdomen that plays a critical role in digestion. The stomach develops from the foregut and connects the esophagus with the duodenum. Structurally, the stomach is C-shaped and forms a greater and lesser curvature and is divided grossly into regions: the cardia, fundus, body, and pylorus. Stomach: Anatomy
      • Intestines
    • Adrenal glands Adrenal Glands The adrenal glands are a pair of retroperitoneal endocrine glands located above the kidneys. The outer parenchyma is called the adrenal cortex and has 3 distinct zones, each with its own secretory products. Beneath the cortex lies the adrenal medulla, which secretes catecholamines involved in the fight-or-flight response. Adrenal Glands: Anatomy :
      • Adrenal cortex Adrenal Cortex The outer layer of the adrenal gland. It is derived from mesoderm and comprised of three zones (outer zona glomerulosa, middle zona fasciculata, and inner zona reticularis) with each producing various steroids preferentially, such as aldosterone; hydrocortisone; dehydroepiandrosterone; and androstenedione. Adrenal cortex function is regulated by pituitary adrenocorticotropin. Adrenal Glands: Anatomy
      • Adrenal medulla Adrenal Medulla The inner portion of the adrenal gland. Derived from ectoderm, adrenal medulla consists mainly of chromaffin cells that produces and stores a number of neurotransmitters, mainly adrenaline (epinephrine) and norepinephrine. The activity of the adrenal medulla is regulated by the sympathetic nervous system. Adrenal Glands: Anatomy
    • Gonads:
      • Testes Testes Gonadal Hormones
      • Ovaries Ovaries Ovaries are the paired gonads of the female reproductive system that contain haploid gametes known as oocytes. The ovaries are located intraperitoneally in the pelvis, just posterior to the broad ligament, and are connected to the pelvic sidewall and to the uterus by ligaments. These organs function to secrete hormones (estrogen and progesterone) and to produce the female germ cells (oocytes). Ovaries: Anatomy
    • Placenta Placenta A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (chorionic villi) derived from trophoblasts and a maternal portion (decidua) derived from the uterine endometrium. The placenta produces an array of steroid, protein and peptide hormones (placental hormones). Placenta, Umbilical Cord, and Amniotic Cavity

    Types of Hormones

    Amino acid Amino acid Amino acids (AAs) are composed of a central carbon atom attached to a carboxyl group, an amino group, a hydrogen atom, and a side chain (R group). Basics of Amino Acids

    Most hormones are amino acid Amino acid Amino acids (AAs) are composed of a central carbon atom attached to a carboxyl group, an amino group, a hydrogen atom, and a side chain (R group). Basics of Amino Acids

    • Hormones may be:
      • Simple amino acid Amino acid Amino acids (AAs) are composed of a central carbon atom attached to a carboxyl group, an amino group, a hydrogen atom, and a side chain (R group). Basics of Amino Acids derivatives:
        • Most commonly derived from tyrosine Tyrosine A non-essential amino acid. In animals it is synthesized from phenylalanine. It is also the precursor of epinephrine; thyroid hormones; and melanin. Synthesis of Nonessential Amino Acids
        • Example: epinephrine Epinephrine The active sympathomimetic hormone from the adrenal medulla. It stimulates both the alpha- and beta- adrenergic systems, causes systemic vasoconstriction and gastrointestinal relaxation, stimulates the heart, and dilates bronchi and cerebral vessels. Sympathomimetic Drugs
        • Short amino acid Amino acid Amino acids (AAs) are composed of a central carbon atom attached to a carboxyl group, an amino group, a hydrogen atom, and a side chain (R group). Basics of Amino Acids chains
        • Example: insulin Insulin Insulin is a peptide hormone that is produced by the beta cells of the pancreas. Insulin plays a role in metabolic functions such as glucose uptake, glycolysis, glycogenesis, lipogenesis, and protein synthesis. Exogenous insulin may be needed for individuals with diabetes mellitus, in whom there is a deficiency in endogenous insulin or increased insulin resistance. Insulin
        • Long amino acid Amino acid Amino acids (AAs) are composed of a central carbon atom attached to a carboxyl group, an amino group, a hydrogen atom, and a side chain (R group). Basics of Amino Acids chains
        • Example: epidermal growth factor
        • Travel freely to site of action
        • Relatively shorter half-life Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Pharmacokinetics and Pharmacodynamics as compared with steroid hormones
        • Exception: thyroid hormones Thyroid hormones The 2 primary thyroid hormones are triiodothyronine (T3) and thyroxine (T4). These hormones are synthesized and secreted by the thyroid, and they are responsible for stimulating metabolism in most cells of the body. Their secretion is regulated primarily by thyroid-stimulating hormone (TSH), which is produced by the pituitary gland. Thyroid Hormones → amino acid Amino acid Amino acids (AAs) are composed of a central carbon atom attached to a carboxyl group, an amino group, a hydrogen atom, and a side chain (R group). Basics of Amino Acids –derived hormones that have intracellular receptors Receptors Receptors are proteins located either on the surface of or within a cell that can bind to signaling molecules known as ligands (e.g., hormones) and cause some type of response within the cell. Receptors

        Steroid hormones

        • Synthesized from cholesterol Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Cholesterol Metabolism → lipophilic
        • Bound to plasma Plasma The residual portion of blood that is left after removal of blood cells by centrifugation without prior blood coagulation. Transfusion Productsproteins Proteins Linear polypeptides that are synthesized on ribosomes and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of amino acids determines the shape the polypeptide will take, during protein folding, and the function of the protein. Energy Homeostasis in the blood:
          • Proteins Proteins Linear polypeptides that are synthesized on ribosomes and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of amino acids determines the shape the polypeptide will take, during protein folding, and the function of the protein. Energy Homeostasis function as a reservoir Reservoir Animate or inanimate sources which normally harbor disease-causing organisms and thus serve as potential sources of disease outbreaks. Reservoirs are distinguished from vectors (disease vectors) and carriers, which are agents of disease transmission rather than continuing sources of potential disease outbreaks. Humans may serve both as disease reservoirs and carriers. Escherichia coli .
          • Relatively longer half-life Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Pharmacokinetics and Pharmacodynamics , as compared with amino acid Amino acid Amino acids (AAs) are composed of a central carbon atom attached to a carboxyl group, an amino group, a hydrogen atom, and a side chain (R group). Basics of Amino Acids hormones
          • Adrenal hormones Adrenal hormones There are 2 primary portions of the adrenal glands, the adrenal medulla and the adrenal cortex. The adrenal medulla is the inner portion of the gland, secreting epinephrine and, to a lesser degree, norepinephrine. The adrenal cortex is the outer portion of the gland and secretes mineralocorticoids, glucocorticoids, and androgens. Adrenal Hormones
          • Gonadal hormones Gonadal hormones The gonadal hormones are produced by the human gonads: the testes and the ovaries. The primary hormones produced by these organs include androgens, estrogens, and progestins. Testosterone is the primary androgen, and estradiol and progesterone are the primary female hormones. Gonadal Hormones

          Hormone Signaling

          to receptors Receptors Receptors are proteins located either on the surface of or within a cell that can bind to signaling molecules known as ligands (e.g., hormones) and cause some type of response within the cell. Receptors

          , which then convey their message through secondary messengers and/or signal cascades. Steroid hormones, when bound to their receptors Receptors Receptors are proteins located either on the surface of or within a cell that can bind to signaling molecules known as ligands (e.g., hormones) and cause some type of response within the cell. Receptors

          DNA DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA Types and Structure

          and affect gene Gene A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Basic Terms of Genetics

          Modes of communication Communication The exchange or transmission of ideas, attitudes, or beliefs between individuals or groups. Decision-making Capacity and Legal Competence

          There are several ways hormones send messages throughout the body:

          • Endocrine hormones: released from specialized cells and travel through the blood to a distant site of action (true hormones)
          • Paracrine hormones: released into the interstitial fluid Interstitial fluid Body Fluid Compartments to act on neighboring cells
          • Autocrine hormones: Cells release hormones to regulate themselves.
          • Neuroendocrine hormones: Neurons Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the nervous system. Nervous System: Histology release a neurohormone that is carried through the blood to its distant site of action.

          Signaling via plasma Plasma The residual portion of blood that is left after removal of blood cells by centrifugation without prior blood coagulation. Transfusion Products

          memrane hormone receptors Receptors Receptors are proteins located either on the surface of or within a cell that can bind to signaling molecules known as ligands (e.g., hormones) and cause some type of response within the cell. Receptors

          Plasma membrane Plasma membrane A cell membrane (also known as the plasma membrane or plasmalemma) is a biological membrane that separates the cell contents from the outside environment. A cell membrane is composed of a phospholipid bilayer and proteins that function to protect cellular DNA and mediate the exchange of ions and molecules. The Cell: Cell Membrane

          receptors Receptors Receptors are proteins located either on the surface of or within a cell that can bind to signaling molecules known as ligands (e.g., hormones) and cause some type of response within the cell. Receptors

          are typically required for amino acid Amino acid Amino acids (AAs) are composed of a central carbon atom attached to a carboxyl group, an amino group, a hydrogen atom, and a side chain (R group). Basics of Amino Acids

          –based hormones and use 2nd-messenger systems and signal cascades:

          • 2nd messengers:
            • A hormone binding to its receptor Receptor Receptors are proteins located either on the surface of or within a cell that can bind to signaling molecules known as ligands (e.g., hormones) and cause some type of response within the cell. Receptors triggers release of the 2nd messengers, which then exert an effect within the cell.
            • Typically small molecules (often not proteins Proteins Linear polypeptides that are synthesized on ribosomes and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of amino acids determines the shape the polypeptide will take, during protein folding, and the function of the protein. Energy Homeostasis )
            • Common 2nd messengers include:
              • Inositol-1,4,5-trisphosphate ( IP3 IP3 Intracellular messenger formed by the action of phospholipase C on phosphatidylinositol 4, 5-bisphosphate, which is one of the phospholipids that make up the cell membrane. Inositol 1, 4, 5-trisphosphate is released into the cytoplasm where it releases calcium ions from internal stores within the cell’s endoplasmic reticulum. These calcium ions stimulate the activity of B kinase or calmodulin. Second Messengers )
              • cAMP cAMP An adenine nucleotide containing one phosphate group which is esterified to both the 3′- and 5′-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and acth. Phosphodiesterase Inhibitors
              • cGMP cGMP Guanosine cyclic 3. Phosphodiesterase Inhibitors
              • Ca CA Condylomata acuminata are a clinical manifestation of genital HPV infection. Condylomata acuminata are described as raised, pearly, flesh-colored, papular, cauliflower-like lesions seen in the anogenital region that may cause itching, pain, or bleeding. Condylomata Acuminata (Genital Warts) 2+
              • Hormone binding to its receptor Receptor Receptors are proteins located either on the surface of or within a cell that can bind to signaling molecules known as ligands (e.g., hormones) and cause some type of response within the cell. Receptors → triggers conformational change within the receptor Receptor Receptors are proteins located either on the surface of or within a cell that can bind to signaling molecules known as ligands (e.g., hormones) and cause some type of response within the cell. Receptors → triggers a reaction in the next protein in the cascade → triggers a reaction in the next protein, and so forth
              • Signal cascades may include:
                • Sequential Sequential Computed Tomography (CT) covalent modification of downstream proteins Proteins Linear polypeptides that are synthesized on ribosomes and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of amino acids determines the shape the polypeptide will take, during protein folding, and the function of the protein. Energy Homeostasis (often adding or removing phosphates to proteins Proteins Linear polypeptides that are synthesized on ribosomes and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of amino acids determines the shape the polypeptide will take, during protein folding, and the function of the protein. Energy Homeostasis )
                • Release of 2nd messengers
                • Altered gene Gene A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Basic Terms of Genetics expression
                • Change of enzyme activities

                Signaling via intracellular hormone receptors Receptors Receptors are proteins located either on the surface of or within a cell that can bind to signaling molecules known as ligands (e.g., hormones) and cause some type of response within the cell. Receptors

                Intracellular receptors Receptors Receptors are proteins located either on the surface of or within a cell that can bind to signaling molecules known as ligands (e.g., hormones) and cause some type of response within the cell. Receptors

                generally cause direct gene Gene A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Basic Terms of Genetics

                Steroid hormone signaling

                • Steroid and thyroid hormones Thyroid hormones The 2 primary thyroid hormones are triiodothyronine (T3) and thyroxine (T4). These hormones are synthesized and secreted by the thyroid, and they are responsible for stimulating metabolism in most cells of the body. Their secretion is regulated primarily by thyroid-stimulating hormone (TSH), which is produced by the pituitary gland. Thyroid Hormones can diffuse directly into the cell.
                • Bind BIND Hyperbilirubinemia of the Newborn to intracellular receptors Receptors Receptors are proteins located either on the surface of or within a cell that can bind to signaling molecules known as ligands (e.g., hormones) and cause some type of response within the cell. Receptors
                • Hormone-receptor complexes bind BIND Hyperbilirubinemia of the Newborn directly to hormone response elements within the DNA DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA Types and Structure .
                • Binding alters (typically stimulates) transcription Transcription Transcription of genetic information is the first step in gene expression. Transcription is the process by which DNA is used as a template to make mRNA. This process is divided into 3 stages: initiation, elongation, and termination. Stages of Transcription of target genes Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. DNA Types and Structure → affects which proteins Proteins Linear polypeptides that are synthesized on ribosomes and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of amino acids determines the shape the polypeptide will take, during protein folding, and the function of the protein. Energy Homeostasis are being produced in the cell

                Related videos

                Clinical Relevance

                Just about every hormone listed in the tables can be secreted in abnormal levels, resulting in a wide range of clinical conditions. Some of these conditions include:

                • Hypopituitarism Hypopituitarism Hypopituitarism is a condition characterized by pituitary hormone deficiency. This condition primarily results from a disease of the pituitary gland, but it may arise from hypothalamic dysfunction. Pituitary tumors are one of the most common causes. The majority of cases affect the anterior pituitary lobe (adenohypophysis), which accounts for 80% of the gland. Hypopituitarism : condition characterized by a deficiency of all the pituitary hormones Pituitary hormones The hypothalamic and pituitary hormones are the most important regulators of the endocrine system. The hypothalamus functions as the coordinating center between the CNS and endocrine system by integrating the signals received from the rest of the brain and releasing appropriate regulatory hormones to the pituitary gland. The pituitary gland then releases its own hormones in response to hypothalamic stimulation. Hypothalamic and Pituitary Hormones . Because the pituitary hormones Pituitary hormones The hypothalamic and pituitary hormones are the most important regulators of the endocrine system. The hypothalamus functions as the coordinating center between the CNS and endocrine system by integrating the signals received from the rest of the brain and releasing appropriate regulatory hormones to the pituitary gland. The pituitary gland then releases its own hormones in response to hypothalamic stimulation. Hypothalamic and Pituitary Hormones regulate multiple organs, the effects of pituitary hypofunction are multisystemic. Causes of hypopituitarism Hypopituitarism Hypopituitarism is a condition characterized by pituitary hormone deficiency. This condition primarily results from a disease of the pituitary gland, but it may arise from hypothalamic dysfunction. Pituitary tumors are one of the most common causes. The majority of cases affect the anterior pituitary lobe (adenohypophysis), which accounts for 80% of the gland. Hypopituitarism include pituitary masses, congenital Congenital Chorioretinitis syndromes, trauma, infections Infections Invasion of the host organism by microorganisms or their toxins or by parasites that can cause pathological conditions or diseases. Chronic Granulomatous Disease , and vascular damage. Treatment includes hormonal replacement and addressing the underlying etiology.
                • Acromegaly Acromegaly A condition caused by prolonged exposure to excessive human growth hormone in adults. It is characterized by bony enlargement of the face; lower jaw (prognathism); hands; feet; head; and thorax. The most common etiology is a growth hormone-secreting pituitary adenoma. Acromegaly and Gigantism and gigantism Gigantism The condition of accelerated and excessive growth in children or adolescents who are exposed to excess human growth hormone before the closure of epiphyses. It is usually caused by somatotroph hyperplasia or a growth hormone-secreting pituitary adenoma. These patients are of abnormally tall stature, more than 3 standard deviations above normal mean height for age. Acromegaly and Gigantism : caused by excess production of pituitary GH. Typically, acromegaly Acromegaly A condition caused by prolonged exposure to excessive human growth hormone in adults. It is characterized by bony enlargement of the face; lower jaw (prognathism); hands; feet; head; and thorax. The most common etiology is a growth hormone-secreting pituitary adenoma. Acromegaly and Gigantism is the result of excess GH after growth plate closure leading to large extremities and characteristic facies and gigantism Gigantism The condition of accelerated and excessive growth in children or adolescents who are exposed to excess human growth hormone before the closure of epiphyses. It is usually caused by somatotroph hyperplasia or a growth hormone-secreting pituitary adenoma. These patients are of abnormally tall stature, more than 3 standard deviations above normal mean height for age. Acromegaly and Gigantism is the tall stature seen in excess GH states in children before growth plate closure.
                • Hyperprolactinemia Hyperprolactinemia Hyperprolactinemia is defined as a condition of elevated levels of prolactin (PRL) hormone in the blood. The PRL hormone is secreted by the anterior pituitary gland and is responsible for breast development and lactation. The most common cause is PRL-secreting pituitary adenomas (prolactinomas). Hyperprolactinemia : elevated levels of prolactin Prolactin A lactogenic hormone secreted by the adenohypophysis. It is a polypeptide of approximately 23 kd. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Breasts: Anatomy in the blood. The most common cause of hyperprolactinemia Hyperprolactinemia Hyperprolactinemia is defined as a condition of elevated levels of prolactin (PRL) hormone in the blood. The PRL hormone is secreted by the anterior pituitary gland and is responsible for breast development and lactation. The most common cause is PRL-secreting pituitary adenomas (prolactinomas). Hyperprolactinemia is a prolactin-secreting pituitary adenoma Pituitary adenoma Pituitary adenomas are tumors that develop within the anterior lobe of the pituitary gland. Non-functioning or non-secretory adenomas do not secrete hormones but can compress surrounding pituitary tissue, leading to hypopituitarism. Secretory adenomas secrete various hormones depending on the cell type from which they evolved, leading to hyperpituitarism. Pituitary Adenomas known as a prolactinoma Prolactinoma A pituitary adenoma which secretes prolactin, leading to hyperprolactinemia. Clinical manifestations include amenorrhea; galactorrhea; impotence; headache; visual disturbances; and cerebrospinal fluid rhinorrhea. Hyperprolactinemia . Presentations can include galactorrhea Galactorrhea Excessive or inappropriate lactation in females or males, and not necessarily related to pregnancy. Galactorrhea can occur either unilaterally or bilaterally, and be profuse or sparse. Its most common cause is hyperprolactinemia. Hyperprolactinemia (milky discharge), oligomenorrhea Oligomenorrhea Polycystic Ovarian Syndrome , erectile dysfunction Erectile Dysfunction Erectile dysfunction (ED) is defined as the inability to achieve or maintain a penile erection, resulting in difficulty to perform penetrative sexual intercourse. Local penile factors and systemic diseases, including diabetes, cardiac disease, and neurological disorders, can cause ED. Erectile Dysfunction , and, in the case of large tumors, headaches and visual changes. Management typically involves dopamine Dopamine One of the catecholamine neurotransmitters in the brain. It is derived from tyrosine and is the precursor to norepinephrine and epinephrine. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. Receptors and Neurotransmitters of the CNS agonists as 1st-line therapy, though surgery and/or radiation Radiation Emission or propagation of acoustic waves (sound), electromagnetic energy waves (such as light; radio waves; gamma rays; or x-rays), or a stream of subatomic particles (such as electrons; neutrons; protons; or alpha particles). Osteosarcoma may be required.
                • Central diabetes insipidus Central Diabetes Insipidus A genetic or acquired polyuric disorder caused by a deficiency of vasopressins secreted by the neurohypophysis. Clinical signs include the excretion of large volumes of dilute urine; hypernatremia; thirst; and polydipsia. Etiologies include head trauma; surgeries and diseases involving the hypothalamus and the pituitary gland. This disorder may also be caused by mutations of genes such as arvp encoding vasopressin and its corresponding neurophysin (neurophysins). Diabetes Insipidus ( DI DI Diabetes insipidus (DI) is a condition in which the kidneys are unable to concentrate urine. There are 2 subforms of di: central di (CDI) and nephrogenic di (NDI). Both conditions result in the kidneys being unable to concentrate urine, leading to polyuria, nocturia, and polydipsia. Diabetes Insipidus ): condition in which the kidneys Kidneys The kidneys are a pair of bean-shaped organs located retroperitoneally against the posterior wall of the abdomen on either side of the spine. As part of the urinary tract, the kidneys are responsible for blood filtration and excretion of water-soluble waste in the urine. Kidneys: Anatomy are unable to concentrate urine due to a lack of circulating ADH. These low levels of ADH are due to either decreased production within the hypothalamus Hypothalamus The hypothalamus is a collection of various nuclei within the diencephalon in the center of the brain. The hypothalamus plays a vital role in endocrine regulation as the primary regulator of the pituitary gland, and it is the major point of integration between the central nervous and endocrine systems. Hypothalamus or decreased release from the posterior pituitary gland Pituitary gland The pituitary gland, also known as the hypophysis, is considered the “master endocrine gland” because it releases hormones that regulate the activity of multiple major endocrine organs in the body. The gland sits on the sella turcica, just below the hypothalamus, which is the primary regulator of the pituitary gland. Pituitary Gland: Anatomy . Presentation is with polyuria Polyuria Urination of a large volume of urine with an increase in urinary frequency, commonly seen in diabetes. Renal Potassium Regulation , nocturia Nocturia Frequent urination at night that interrupts sleep. It is often associated with outflow obstruction, diabetes mellitus, or bladder inflammation (cystitis). Diabetes Insipidus , and polydipsia Polydipsia Excessive thirst manifested by excessive fluid intake. It is characteristic of many diseases such as diabetes mellitus; diabetes insipidus; and nephrogenic diabetes insipidus. The condition may be psychogenic in origin. Diabetes Insipidus . Central and nephrogenic DI Nephrogenic DI Diabetes insipidus (DI) is a condition in which the kidneys are unable to concentrate urine. There are 2 subforms of DI: central DI (CDI) and nephrogenic DI (NDI). In nephrogenic DI, the kidneys fail to respond to circulating ADH. Both conditions result in the kidneys being unable to concentrate urine, leading to polyuria, nocturia, and polydipsia. Diabetes Insipidus are differentiated on the basis of measured ADH levels and response to the water deprivation test Water Deprivation Test Diabetes Insipidus .
                • Hyperthyroidism and hypothyroidism Hypothyroidism Hypothyroidism is a condition characterized by a deficiency of thyroid hormones. Iodine deficiency is the most common cause worldwide, but Hashimoto’s disease (autoimmune thyroiditis) is the leading cause in non-iodine-deficient regions. Hypothyroidism : abnormally high or low levels of thyroid Thyroid The thyroid gland is one of the largest endocrine glands in the human body. The thyroid gland is a highly vascular, brownish-red gland located in the visceral compartment of the anterior region of the neck. Thyroid Gland: Anatomy hormone production in the thyroid Thyroid The thyroid gland is one of the largest endocrine glands in the human body. The thyroid gland is a highly vascular, brownish-red gland located in the visceral compartment of the anterior region of the neck. Thyroid Gland: Anatomy gland. Individuals with these conditions will exhibit signs and symptoms related to the resulting elevated or suppressed cellular metabolism Cellular metabolism The chemical reactions in living organisms by which energy is provided for vital processes and activities and new material is assimilated. Thyroid Hormones , including changes in energy level, weight, bowel movements, and heart rate Heart rate The number of times the heart ventricles contract per unit of time, usually per minute. Cardiac Physiology .
                • Diabetes mellitus Diabetes mellitus Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia and dysfunction of the regulation of glucose metabolism by insulin. Type 1 DM is diagnosed mostly in children and young adults as the result of autoimmune destruction of β cells in the pancreas and the resulting lack of insulin. Type 2 DM has a significant association with obesity and is characterized by insulin resistance. Diabetes Mellitus ( DM DM Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia and dysfunction of the regulation of glucose metabolism by insulin. Type 1 DM is diagnosed mostly in children and young adults as the result of autoimmune destruction of β cells in the pancreas and the resulting lack of insulin. Type 2 DM has a significant association with obesity and is characterized by insulin resistance. Diabetes Mellitus ): ↓ insulin Insulin Insulin is a peptide hormone that is produced by the beta cells of the pancreas. Insulin plays a role in metabolic functions such as glucose uptake, glycolysis, glycogenesis, lipogenesis, and protein synthesis. Exogenous insulin may be needed for individuals with diabetes mellitus, in whom there is a deficiency in endogenous insulin or increased insulin resistance. Insulin production in the pancreas Pancreas The pancreas lies mostly posterior to the stomach and extends across the posterior abdominal wall from the duodenum on the right to the spleen on the left. This organ has both exocrine and endocrine tissue. Pancreas: Anatomy or ↓ insulin Insulin Insulin is a peptide hormone that is produced by the beta cells of the pancreas. Insulin plays a role in metabolic functions such as glucose uptake, glycolysis, glycogenesis, lipogenesis, and protein synthesis. Exogenous insulin may be needed for individuals with diabetes mellitus, in whom there is a deficiency in endogenous insulin or increased insulin resistance. Insulin sensitivity in peripheral tissues. Without normal insulin Insulin Insulin is a peptide hormone that is produced by the beta cells of the pancreas. Insulin plays a role in metabolic functions such as glucose uptake, glycolysis, glycogenesis, lipogenesis, and protein synthesis. Exogenous insulin may be needed for individuals with diabetes mellitus, in whom there is a deficiency in endogenous insulin or increased insulin resistance. Insulin function, glucose Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Lactose Intolerance is unable to be transported into tissues and remains trapped within the blood, leading to hyperglycemia Hyperglycemia Abnormally high blood glucose level. Diabetes Mellitus . DM DM Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia and dysfunction of the regulation of glucose metabolism by insulin. Type 1 DM is diagnosed mostly in children and young adults as the result of autoimmune destruction of β cells in the pancreas and the resulting lack of insulin. Type 2 DM has a significant association with obesity and is characterized by insulin resistance. Diabetes Mellitus is treated with insulin-sensitizing agents or insulin Insulin Insulin is a peptide hormone that is produced by the beta cells of the pancreas. Insulin plays a role in metabolic functions such as glucose uptake, glycolysis, glycogenesis, lipogenesis, and protein synthesis. Exogenous insulin may be needed for individuals with diabetes mellitus, in whom there is a deficiency in endogenous insulin or increased insulin resistance. Insulin itself.
                • Cushing syndrome Cushing syndrome A condition caused by prolonged exposure to excess levels of cortisol (hydrocortisone) or other glucocorticoids from endogenous or exogenous sources. It is characterized by upper body obesity; osteoporosis; hypertension; diabetes mellitus; hirsutism; amenorrhea; and excess body fluid. Endogenous Cushing syndrome or spontaneous hypercortisolism is divided into two groups, those due to an excess of adrenocorticotropin and those that are acth-independent. Paraneoplastic Syndromes : condition resulting from chronic exposure to excess glucocorticoids Glucocorticoids Glucocorticoids are a class within the corticosteroid family. Glucocorticoids are chemically and functionally similar to endogenous cortisol. There are a wide array of indications, which primarily benefit from the antiinflammatory and immunosuppressive effects of this class of drugs. Glucocorticoids . Etiologies include chronic glucocorticoid intake, increased adrenal secretion Secretion Coagulation Studies of cortisol Cortisol Glucocorticoids , or increased pituitary or ectopic secretion Secretion Coagulation Studies of ACTH. Typical features include central obesity Obesity Obesity is a condition associated with excess body weight, specifically with the deposition of excessive adipose tissue. Obesity is considered a global epidemic. Major influences come from the western diet and sedentary lifestyles, but the exact mechanisms likely include a mixture of genetic and environmental factors. Obesity ; thin, bruisable skin Skin The skin, also referred to as the integumentary system, is the largest organ of the body. The skin is primarily composed of the epidermis (outer layer) and dermis (deep layer). The epidermis is primarily composed of keratinocytes that undergo rapid turnover, while the dermis contains dense layers of connective tissue. Skin: Structure and Functions ; abdominal striae; secondary hypertension Hypertension Hypertension, or high blood pressure, is a common disease that manifests as elevated systemic arterial pressures. Hypertension is most often asymptomatic and is found incidentally as part of a routine physical examination or during triage for an unrelated medical encounter. Hypertension ; hyperglycemia Hyperglycemia Abnormally high blood glucose level. Diabetes Mellitus ; and proximal muscle weakness Proximal Muscle Weakness Lambert-Eaton Myasthenic Syndrome .
                • Adrenal insufficiency Adrenal Insufficiency Conditions in which the production of adrenal corticosteroids falls below the requirement of the body. Adrenal insufficiency can be caused by defects in the adrenal glands, the pituitary gland, or the hypothalamus. Adrenal Insufficiency and Addison Disease : inadequate production of adrenocortical hormones ( glucocorticoids Glucocorticoids Glucocorticoids are a class within the corticosteroid family. Glucocorticoids are chemically and functionally similar to endogenous cortisol. There are a wide array of indications, which primarily benefit from the antiinflammatory and immunosuppressive effects of this class of drugs. Glucocorticoids , mineralocorticoids Mineralocorticoids Mineralocorticoids are a drug class within the corticosteroid family and fludrocortisone is the primary medication within this class. Fludrocortisone is a fluorinated analog of cortisone. The fluorine moiety protects the drug from isoenzyme inactivation in the kidney, allowing it to exert its mineralocorticoid effect. Mineralocorticoids , and adrenal androgens Androgens Androgens are naturally occurring steroid hormones responsible for development and maintenance of the male sex characteristics, including penile, scrotal, and clitoral growth, development of sexual hair, deepening of the voice, and musculoskeletal growth. Androgens and Antiandrogens ). Management involves glucocorticoid and mineralocorticoid replacement therapy.
                  • Addison’s disease Addison’s Disease Adrenal insufficiency (AI) is the inadequate production of adrenocortical hormones: glucocorticoids, mineralocorticoids, and adrenal androgens. Primary AI, also called Addison’s disease, is caused by autoimmune disease, infections, and malignancy, among others. Adrenal Insufficiency and Addison Disease (primary adrenal insufficiency Adrenal Insufficiency Conditions in which the production of adrenal corticosteroids falls below the requirement of the body. Adrenal insufficiency can be caused by defects in the adrenal glands, the pituitary gland, or the hypothalamus. Adrenal Insufficiency and Addison Disease ): due to pathology within the adrenal cortex Adrenal Cortex The outer layer of the adrenal gland. It is derived from mesoderm and comprised of three zones (outer zona glomerulosa, middle zona fasciculata, and inner zona reticularis) with each producing various steroids preferentially, such as aldosterone; hydrocortisone; dehydroepiandrosterone; and androstenedione. Adrenal cortex function is regulated by pituitary adrenocorticotropin. Adrenal Glands: Anatomy itself. Etiologies include autoimmune disease, infections Infections Invasion of the host organism by microorganisms or their toxins or by parasites that can cause pathological conditions or diseases. Chronic Granulomatous Disease , and malignancy Malignancy Hemothorax (among others).
                  • Secondary and tertiary adrenal insufficiency Tertiary adrenal insufficiency Deficiency in the hypothalamic secretion of corticotropin-releasing hormone (CRH). Adrenal Insufficiency and Addison Disease : due to the decreased production of ACTH within the pituitary, or hypothalamic disorders. These levels of insufficiency can also occur because of prolonged glucocorticoid therapy.

                  References

                  1. Saladin, K.S., Miller, L. (2004). Anatomy and physiology, 3rd ed. pp. 638–649, 1030–1032, 1058–1060).
                  2. Welk, C. K. (2021). Hypothalamic-pituitary axis. UpToDate. Retrieved July 30, 2021, from https://www.uptodate.com/contents/hypothalamic-pituitary-axis
                  3. Brent, G.A. (2020). Thyroid hormone action. UpToDate. Retrieved August 5, 2021, from https://www.uptodate.com/contents/thyroid-hormone-action
                  4. Rosner, J. (2020). Physiology, female reproduction. StatPearls. Retrieved August 3, 2021, from https://www.statpearls.com/articlelibrary/viewarticle/771/
                  5. Gurung, P. (2021). Physiology, male reproductive system. StatPearls. Retrieved August 3, 2021, from https://www.statpearls.com/articlelibrary/viewarticle/770/
                  6. Williams, G. H., and Dluhy, R.G. (2008). Disorders of the adrenal cortex. In Fauci, A. S., Braunwald, E., Kasper, D.L., et al. (Eds.) Harrison’s Internal Medicine (17th Ed., p. 2266).
                  7. Goldfarb, S. (2021). Regulation of calcium and phosphate balance. UpToDate. Retrieved August 4, 2021, from https://www.uptodate.com/contents/regulation-of-calcium-and-phosphate-balance
                  8. Khan, M. (2021) Physiology, parathyroid hormone. StatPearls. Retrieved August 4, 2021, from https://www.statpearls.com/articlelibrary/viewarticle/26662/