Endocrine control of growth
Human growth is a complex process starting at conception and completing in adolescence at the time of growth plate fusion. Growth can be divided into four phases: (1) fetal, where the predominant endocrine factors controlling growth are insulin and the insulin-like growth factors. (2) Infancy, where growth is mainly dependent upon nutrition. (3) Childhood, where the growth hormone-insulin-like growth factor-I (GH-IGF-I) axis and thyroid hormone are most important. (4) Puberty, where along with the GH-IGF-I axis the activation of the hypothalamo-pituitary-gonadal axis to generate sex steroid secretion becomes vital to the completion of growth. GH is released from the pituitary in a pulsatile fashion under the control of GHRH, Ghrelin, and somatostatin and, via a complex signal transduction cascade, initiates the release of IGF-I within many tissues but predominantly the liver and at the growth plate. IGF-I acts in an autocrine and paracrine manner via the IGF-I receptor to stimulate cell proliferation and longitudinal growth. Activation of the pituitary-gonadal axis during puberty occurs via a complex interaction of factors including kisspeptin, leptin, gonadotrophin releasing hormone, and tachykinin ultimately leading to augmentation of GH secretion, the pubertal growth spurt, and fusion of the growth plates. Many other hormones can affect the GH-IGF-I system or directly affect cell proliferation at the growth plate including thyroid hormone, vitamin D, and corticosteroids.
Similar articles
Loche S, Casini MR, Faedda A. Loche S, et al. Br J Clin Pract Suppl. 1996 Aug;85:1-4. Br J Clin Pract Suppl. 1996. PMID: 8995016 Review.
Rosenfeld RG. Rosenfeld RG. Nestle Nutr Workshop Ser Pediatr Program. 2010;65:225-34; discussion 234-7. doi: 10.1159/000281170. Epub 2010 Feb 1. Nestle Nutr Workshop Ser Pediatr Program. 2010. PMID: 20139685
Brook CG, Hindmarsh PC. Brook CG, et al. Endocrinol Metab Clin North Am. 1992 Dec;21(4):767-82. Endocrinol Metab Clin North Am. 1992. PMID: 1486875 Review.
Luque RM, Gahete MD, Valentine RJ, Kineman RD. Luque RM, et al. J Mol Endocrinol. 2006 Aug;37(1):25-38. doi: 10.1677/jme.1.02042. J Mol Endocrinol. 2006. PMID: 16901921
Phillip M, Moran O, Lazar L. Phillip M, et al. J Pediatr Endocrinol Metab. 2002 Dec;15 Suppl 5:1267-72. J Pediatr Endocrinol Metab. 2002. PMID: 12510977 Review.
Cited by
Kord E, Neeman BB, Perez D, Chertin B, Zisman A, Neheman A. Kord E, et al. Ther Adv Urol. 2023 May 19;15:17562872231172835. doi: 10.1177/17562872231172835. eCollection 2023 Jan-Dec. Ther Adv Urol. 2023. PMID: 37222989 Free PMC article.
Rigutto-Farebrother J. Rigutto-Farebrother J. Nutrients. 2023 Feb 5;15(4):814. doi: 10.3390/nu15040814. Nutrients. 2023. PMID: 36839172 Free PMC article. Review.
Franco M, Khorrami Chokami K, Albertelli M, Teti C, Cocchiara F, Gatto F, Trombetta C, Ferone D, Boschetti M. Franco M, et al. BMC Endocr Disord. 2023 Jan 12;23(1):13. doi: 10.1186/s12902-022-01258-2. BMC Endocr Disord. 2023. PMID: 36631784 Free PMC article.
Mahoney P, McFarlane G, Loch C, White S, Floyd B, Dunn EC, Pitfield R, Nava A, Guatelli-Steinberg D. Mahoney P, et al. Commun Med (Lond). 2022 Aug 22;2:99. doi: 10.1038/s43856-022-00164-x. eCollection 2022. Commun Med (Lond). 2022. PMID: 36016726 Free PMC article.
Saroufim R, Fuqua JS. Saroufim R, et al. J Clin Endocrinol Metab. 2022 Sep 28;107(10):e4263-e4264. doi: 10.1210/clinem/dgac357. J Clin Endocrinol Metab. 2022. PMID: 35731578 Free PMC article. No abstract available.